That Duplicitous Junkyard Analogy

Some kind person elsewhere pointed me at this highly informative page …

Fred Hoyle did NOT support creationism

He may have been mistaken about prebiotic chemistry when that discipline was still in its early infancy, but I urge everyone to bookmark this, the next time the usual suspects peddle the “tornado in a junkyard” garbage.


He was never a Creationist.

Yet his tornado in a junkyard seems useful in certain contexts.

There have been recent findings that suggest that the Universe has a flat (or "saddle-shaped) geometry (instead of being curved into a hypersphere), and current thinking seems to point to the idea that the Universe will expand, run down, and reach a state of maximum entropy . . . which is often called the “heat death” of the Universe.

I have been playing with an idea (since I was a teenager) where “Hoyle’s Tornado” seems relevant to the Big Bang and the heat death of the Universe.

In order to show my argument, I need to point out that infinity is not a very large number. It is an endless number, and any number you show me–no matter how large–is not infinity, as it lacks the quality of endlessness that defines infinity.

In fact, the number 100 trillion is precisely as close to infinity as the number 1, even though this seems counter-intuitive and “goes against common sense.”

This means that if I randomly shuffle 100 billion decks of cards together and deal out poker hands for eternity . . . there will be an infinite number of occasions when I deal out 100 trillion royal flushes in a row, even if I have shuffled the cards fairly.

This seems relevant to the Big Bang and the heat death of the Universe, as I believe that the Universe has always been here. After all, if we believe that God has always existed, then let us save a step and assume that the Universe has always existed.

Also, if the Universe is in a state of maximum entropy as an endless space filled with elementary particles a fraction of a degree above absolute zero (and absolute zero can’t exist because of the consequences of quantum mechanics and the Uncertainty Principle), then I imagine that if we wait long enough, then these particles shuffle themselves randomly into a state of minimum entropy . . . and then we have a Big Bang.

So, I am arguing that the Big Bang is a statistical anomaly that is 100% likely to happen in an infinite amount of time, rather like the anology of shuffling 100 billion decks of cards together.

My argument is simple, it does away with the neccesity of God, it is consistant with the physical laws, and it gives us infinite regression into the past and infinite progression into the future.

It does–however–have flaws that I have not been able to reconcile.

If we picture the Big Bang explosion as a grenade that is suspend in a vast, empty room . . . the shrapnel from the exploding grenade would fly away from the center in a more or less symetrical manner. This means that an ant (assuming it lived) on a fragment of the grenade would see the other fragments in an arc around his point of reference, with no fragments above his head.

So, I would expect the galaxies to be distributed in a vast curve around the observable Universe if everything exploded from a common center in a vast, empty space . . . yet this isn’t the case.

Galaxies are distributed more or less randomly through the Universe, although they gravitationally influence each other into certain organizations like super clusters and galactic walls, which is inconsistant with my idea as I’ve presented it.

Also, my idea of the Big Bang being a random shuffling of matter as a statistical inevitability in an infinitely old Universe does not seem to account for dark matter.

Another objection (pointed out on this forum by Get Off My Lawn, although in a slightly different context from this post) is that if we use a statistical fluke to explain the Big Bang . . . then we must consider the implications of all possible statistical flukes equally, and some of these statistical flukes may lead to the disappearence of the Universe . . . which would mean that it shouldn’t even exist to begin with.

Yet I can’t let go of the idea, so I’ve been tweaking it for decades without resolving these objections.

Still . . . I believe that a random reshuffling makes sense when we consider the laws of thermodynamics, and while this may seem like something akin to a religious faith . . . I would rather have faith in thermodynamics than a God or gods.

1 Like

Physicist Sir Roger Penrose, who has worked on expanding Einstein’s theory of general relativity proposes multiple big bangs might have lead to where we are. Called “Conformal Cyclical Cosmology”. Personally I find this more plausible, but then again I’m a layman.

This would much better explain why the universe isn’t a symmetrical curve from a common center. If more exotic or even less common elements existed soon after the occurrence of the Big Bang this could have lead to more smaller bangs (or even bigger bangs possibly?) Being in a much denser and warmer state than now I think it’s entirely possible.

If Penrose is right, and I’m not saying he is, then theoretically our universe should explode and form into another universe at some point. So is dark matter leftovers from a former universe that has been flung around by other big bangs? Incomprehensibly wild stuff to me, but I enjoy thinking about it.

1 Like

Agreed . . . pondering the origins of the Universe can be very intellectually stimulating.

I haven’t been able to reconcile a statistical fluke creating the Big Bang vs. dark matter, dark energy, an uneveness (actually mapped) in the Cosmic Background radiation, and certain more philosophical objections that I haven’t been able to get around . . . yet the idea explains other things very well.

Yet I haven’t been able to move forward on it in years.

Leave it to an autistic man to get hung up in numbers.

Another idea I need to examine (as I haven’t seen the numbers that I need) is how the “dips” (lower energy frequency than in the surrounding background) in both intensity, area (as compared in a ratio of dips vs. "standard) of the sky, and so forth compare with the percentages of dark matter in the Universe.

I have an autistic intuition that there is a numerical relationship between the irregularity of the cosmic background radiation and the amount (and distribution) of dark matter . . . although I’m having trouble articulating it.

I’ll get back to you.

1 Like

Don’t lose hope on it. You have to consider that a good portion of scientific discovery and scientific correlation is contributed to amateurs and hobbyists research and work. I dabble in electromechanical invention, haven’t come up with much but I enjoy it nonetheless. Currently experimenting with Seebeck generators (TEGs thermoelectric generators) and capturing waste energy from heat sources. I’m appalled by how manufacturers have to heat and cool differing pieces of equipment and no has tried to capture waste energy created from these temperature differentials. I’ll cap this here before I go off on my own long tangent.

It’s a spectrum, we are all on it. I’m sure my musings of electromechanical madness would be coined as autistic by some. Math is fascinating, I wish my grade school had taught it to me in a way that related it more to my interests. If I was shown math with electronics in an engaging way at a younger age, I can only imagine where I would be. Still glad I discovered it later in life.

Please do, I would enjoy hearing more of what you have found. Unfortunately working in a blue collar field I don’t have many colleagues interested in discussing science and space. I swear some days if I have to listen to one more conversation about sports I might just walk out and quit.


Thank you very much for responding to my post . . . and keep me posted on your inventions.

Hey @Kevin_Levites, if I remember correctly, the actual argument for irregularities in microwave background radiation is the distribution of dark matter. They performed some simulations and they discovered that the model best correlated with the observation is the dark matter.
However there are now scientists refusing the dark matter model and are pushing some new calculations, something like modified gravitational hypothesis.
I personally think that the answer is somewhere in between, I think that we don’t understand large masses well enough, and I think that we are ignoring collective effects of individual particles. We have no means to test this by inducing specific changes and measuring their effects so we can only rely upon our passive observation.

1 Like

I agree.

And a part of me wonders: If we understand gravity with the idea that a mass creates a “depression” in space-time (as Carl Sagan explained it in Cosmos by rolling a ball on a flexible surface), the idea occurs to me that if the Universe is not a hypersphere but–rather–saddle-shaped, then a mass would make a differently shaped depression if it was located near one “edge” of the saddle vs. if it was closer to the center.

So, this suggests that the same mass in one part of the Universe may create a different gravitational pull vs. this mass in another part of the Universe.

So, the gravitational constant may not be as costant as we think it is, and I wonder if an asymmetry in the shape of the Universe may cause the contradictions, confusion, and conflicting ideas when we try to ponder gravity on a cosmic scale, and why the James Webb telescope has given data that contradicts our models.

That would violate the Cosmological principle.

1 Like

I know . . . which is one of the issues that I have with my own views.

If you see below:


The presence of mass creates a depression in space-time, with the “depth” (although I am using a flawed anology) dependant upon how much mass is causing the depression.

If you see below, there is a comparison between a saddle-shaped Universe, a flat Universe, and a hyperspherical Universe:


I believe that a large, extremely dense mass would distort space-time differently near the “edge” (again, a flawed anology) of the saddle-shaped Universe than it would in a “flatter” part of the Universe, as the distortion caused by the dense mass would have a different “shape.”

None of my points apply to a “flat” or “hyperspherical” Universe, because the shape of the Universe is (and this is not a play on words) uniform.

These ideas are not anything more than abstract philosophy and speculation unless they can be falsified.

So, I suggest that a very dense mass would bend light differently in one part of the Universe than it would in another part.

Also, I would expect these differences to be more profound in the cosmic past, because the Universe was smaller . . . and the saddle shape was smaller, so it would be “easier” (as if measuring a light beam in the early Universe is, somehow, easy) to measure these differences with a very large telescope looking into the very early past.

In other words, if there is an asymmetry in the shape of the Universe, then I would expect this asymmetry to be reflected in the gravity of very dense objects.

The same goes for the hyperbolic (saddle) version as well.

1 Like

Does it? It seems that a “hyperbolic” shape would be curved differently depending upon where you’re at . . . but maybe I’m wrong.

As you can see, a triangle drawn through the Universe has a different shape depending upon whether the Universe is a hypersphere, flat, or hyperbolic.

In the hyperbolic Universe, the triangle seems (at least to me) to change its shape if we turn it. This is what I mean by the asymmetry.

I don’t think that these visuals can be explained like that. I don’t think that in saddle shaped universe there is difference between one place from the other. These visualisations should be interpreted as every single part of the universe behaving like saddle shaped universe, for example. Or any other for that matter.
Also the representation of gravity pit is only a third of the story, to say so. It is a tridimensional depression, it pulls from all sides. That picture specifically is a bad one as you don’t see the effect that would be exerted on Earth to be in circular motion. It’s more like a sheet of cloth stretched and when you put a big ball in center it pulls all the marbles from the sides. I’ve seen that from some famous professor, name escapes me now.
However these shapes of the universe should not be interpreted as the actual saddle or flat plane, but rather as a description of it’s behaviour at each point.

1 Like

Thank you very much for taking my ideas seriously and for not being dismissive.

I understand that we’re working with flawed anologies when discussing the shape and curvature of space-time, and the illustrations that I picked are limited.

I still have more work to do.

For that matter, what we may interpret as a saddle shape may actually be a portion of the “inside” of a hypertorus.


That is essentially a description about mass and energy balance. If there is more dark energy than the mass, it would be hyperbolic at every point, if there is more mass it would be hyperspheric, if they are balanced every point should act like a flat universe.

1 Like

Perhaps think about it this way:

Lets say we invent a tool, it is two poles you put into the ground and then they print out the amount of curvature in the universe between them. And we’ll agree to always place then 10 meters apart.

You’d find that in the hyperbolic version; you would get the same negative reading no matter where you placed the poles (so long as they are 10 meters apart).

Same goes for the hyper-sphere version (except the reading would be the same positive number each time); and for the flat version it would also be true (but the number would always be 0).


Nice and easy thing to think about when we talk about non-euclidian geometry is map projections. You suddenly realise that it’s not about objects or bodies, but rather curved surfaces that are affected by it and not objects themselves.


Thank you both very much for pointing this out.

As I’ve said, I have a lot more work to do.

1 Like